We will use MATLAB to find the values of N when i and j are between 0 and 7 .

Here is the code:
[I J] = meshgrid(0:6,0:6);
This part finds
$\mathrm{N}=\mathrm{I} .{ }^{\wedge} 2$ + I.*J + J.^2;
\measuredangle the unique values
$N=$ unique(reshape($N, 1$, numel(N))); ${ }^{\swarrow}$ of N
$N=N(N>7) ; \quad$ Take only $N>7$
$N=N(1: 15)<$ Use only 15 values.
So, the next 15 values of N are

$$
\begin{array}{lllllllllllllll}
\hline 9 & 12 & 13 & 16 & 19 & 21 & 25 & 27 & 28 & 31 & 36 & 37 & 39 & 43 & 48
\end{array}
$$

We know that we can't have any missing values of N between the above numbers be cause we have consider all i, j between 0 and 6 . Any other values of N must cone from (i, j) pair which has at least one of the i or $j \geqslant 7$ which will give $\quad N \geqslant 7^{2}=49$.
(a) Each simplex channel use 25 kHZ .

So, each duplex channel use 25×2

$$
=50 \mathrm{kHz}
$$

Total spectrum $=20 \mathrm{MHZ}$
X duplex channel $=\frac{2 \phi \times 10^{6^{3}}}{5 \phi \times 10^{3}}=400$ channels
(b) Each cluster will use to whole 400 channels. These channels are divided among the cells in each cluster.
For $N=4$, there are 4 cells in a cluster. Hence
x channel $=\frac{400}{4}=100$ channels per cell site.
(a) To find the distance D_{1}, \cdots, D_{6}, let's recall sore facts about hexagon.

D_{3} and D_{6} are easy to find. $D_{3}=R+R=2 R$

$$
D_{6}=R+R+R+R=4 R
$$

For the rest of the distances, the key to find them is to select suitable right triangles.

$$
D_{2}^{2}=D_{4}^{2}=\left(\frac{B}{2}\right)^{2}+(3 \beta)^{2}=\left(\frac{1}{4}+9 \times \frac{3}{4}\right) R^{2}
$$

$$
=7 R^{2}
$$

So, $D_{2}=D_{4}=\sqrt{7} R$

So,

$$
\begin{aligned}
& D_{1}=D_{5}=\sqrt{13} R \\
& D_{2}=D_{4}=\sqrt{7} R \\
& D_{3}=2 R \\
& D_{6}=4 R
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \begin{aligned}
& \frac{S}{I}=\frac{R^{-\gamma}}{\sum_{i=1}^{6} D_{i}^{-\gamma}}=\frac{1}{\sum_{i=1}^{6}\left(\frac{D_{i}}{R}\right)^{-\gamma}}=\frac{1}{2 \times(\sqrt{13})^{-4}+} \\
&=8.399 \\
&=10 \log 8.399 d_{B}
\end{aligned} \\
& =9.242 \mathrm{~dB} \\
& \frac{D}{R}=\sqrt{3 N} \Rightarrow D=\sqrt{3 N} \times R=\sqrt{3 \times 3} R \\
& =3 R \\
& \frac{S}{I}=\frac{1}{6 \times 3^{-4}}=13.5 \\
& =10 \log 13.5 \mathrm{~dB} \\
& =11.303 \mathrm{~dB}
\end{aligned}
$$

(d) In part (c) we use approximated distances and hence the answer is different from part (b) which use the exact distances.

When N is large, the difference will be small.

$$
\frac{S}{I}=\frac{1}{K}(\sqrt{3 N})^{4}=\frac{1}{K}(3 N)^{2}=\frac{1}{K} 9 N^{2}
$$

We need this number to be $\geqslant 15 d B=10^{\frac{15}{10}}=10^{\frac{3}{2}}$ Recall that we want N to be small to get large capacity value. Hence, we need to pick minimal value of N such that the above inequality is still satisfied.

For (a), we use $k=6$.

$$
\begin{aligned}
\frac{S}{I}=\frac{1}{2} \times d^{3} \times N^{2} & \geqslant 15 d B \\
N^{2} & \geqslant \frac{2}{3} \times 10^{\frac{3}{2}}
\end{aligned}
$$

Possible values of
N are $3479 \ldots \sqrt{\frac{2}{3} \times 10^{3 / 2}}=4.591$
From Q_{1}^{ℓ}, the \min value of N such that it is still $\geqslant 4.6$ is $N=7$.

For (b), we use $k=2$.

$$
\begin{aligned}
\frac{s}{I}=\frac{1}{2} \times 9 N^{2} & \geqslant 10^{3 / 2} \\
N & \geqslant \sqrt{\frac{2}{9} \times 10^{3 / 2}}=2.651
\end{aligned}
$$

From Q_{1}, the min value of N such that it
is still $\geqslant 2.6$ is $N=3$.

For (c), we use $k=1$

$$
\begin{aligned}
\frac{s}{I}=9 N^{2} & \geqslant 10^{3 / 2} \\
N & \geqslant \sqrt{\frac{1}{9} \times 10^{3 / 2}}=1.874
\end{aligned}
$$

From Q2, the min value of N such that it is still $\geqslant 1.874$ is $N=3$
$\frac{A_{\text {system }}}{A_{\text {cell }}} \frac{S}{N}$

So, by using 120° sectoring the "capacity" of the system increases from the case of omnidirectional antenna.

However, if weave already use 120° sectoring, using 60° sectoring does not help in trim of "capacity!!

The last example in Sec. 2.4 takes this example further and instead of simply using the "capacity" defined earlier, it consider the number of users that the system can support without making the call blocking probability exceed 5%

$$
\text { Let Erlang } B(m, A)=\frac{A^{m} / m!}{\sum_{i=0}^{m} A^{i} / i!}
$$

This gives the probability of blocking $\left(P_{b}\right)$.
Ofcourse, we want P_{b} to be small.
In this question, we want $P_{b} \leq \frac{0.5}{100}=0.005$.
For fixed $m, \operatorname{Erlang} B(m, A)$ is an increasing function of A. Hence, if we don't want P_{b} to be greater than sone value, we will need to limit the value of A to be less than some max quantity as well.
(a) $m=5 \Rightarrow P_{b}=\operatorname{Erlang} B(5, A) \leq 0005$
\downarrow MATLAB
$A \leqslant 1.13$ Erlang
Each wed generates 0.1 Erlangs.
So n wars will generate $n \times 0.1$ Erlongs.
Hence, we need

$$
\begin{aligned}
n \times 0.1 & \leq 1.13 \\
n & \leq 11.3
\end{aligned}
$$

So, the system con support 11 wars
(b)

$$
\begin{aligned}
m=15 \Rightarrow E r l a n g B(15, A) & \leq 0.005 \\
A & \leq 7.38 \\
\Rightarrow n & \leq 73.8
\end{aligned}
$$

so, the system can support 73 users
(c)

$$
\begin{aligned}
m=25 \Rightarrow E r \operatorname{lang} B(25, A) & \leq 0.005 \\
A & \leq 14.997 \\
\Rightarrow n & \leq 149.97
\end{aligned}
$$

so, the system can support 149 users

$$
\lambda=3 \text { calls per hour }
$$

$$
\frac{1}{\mu}=5 \text { minutes }=\frac{5}{60} \text { hour }=\frac{1}{12} \text { hour. }
$$

(a) $A_{0}=\frac{\lambda}{\mu}=3 \times \frac{1}{12}=\frac{1}{4}$ Erlang per user
(b)

$$
\begin{aligned}
\text { Erlang } B(1, A) & \leqslant 0.0101 \\
\Rightarrow A & \leqslant 0.0101 \\
n \times A_{\mu}^{\prime \prime} & \\
n & \leqslant \frac{0.0101}{1 / 4}^{=}=0.0404
\end{aligned}
$$

so, the system can support 0 user
Note that this calculation comes from our assumption of $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ queue which assumes" infinite" number of users with extremely small Erlang per user.
of course, we never have infinite" number of users in real system.
When the number of users is large, the Erlang B formula provides reasonable answer.
Here, the number of users is very small and the Erlang B formula gives strange answer.

Intuitively, the system which has one channel should be able to support at least 1 user with 0% blocking.
The Erlang B formula should become more accurate when there are a lot of users.
(c) Erlang $B(5, A) \leq 0.01$

$$
\begin{aligned}
\Rightarrow \quad A & \leq 1.36 \\
n \times A_{u} & \\
n & \leq 4 \times 1.36=5.44
\end{aligned}
$$

so, the system can support, 5 users
(d) Erlang $B(5, \underbrace{2 \times 5}_{n} \times \underbrace{5}_{\uparrow} \times \underbrace{\frac{1}{4}}_{A_{u}})=0.0697=6.97 \%$

Q7 Reflection from a ground plane
(a)

$$
h_{t}=50 \mathrm{~m}, \quad h_{r}=2 \mathrm{~m}
$$

(a.i) $\quad h_{t}=100 \mathrm{~m}, h_{p}=1 \mathrm{~m}$
(a .ii)
For large d, the two plots are virtually the same.
To find the slope, we define

$$
\text { define } \begin{aligned}
& y=\log _{10}\left(r_{2}-r_{1}\right) \\
& x=\log _{10} d \\
& \text { slope } \approx \frac{y_{2}-y_{1}}{\alpha_{2}-\alpha_{1}} \approx \frac{\log _{10}\left(2 \times 10^{-3}\right)-\log _{10}\left(2 \times 10^{-2}\right)}{\log _{10}\left(10^{5}\right)-\log _{10}\left(10^{4}\right)}=-1
\end{aligned}
$$

Therefore, $\log _{10}\left(r_{2}-r_{1}\right) \approx B-\log _{10} d$ for some constant B $r_{2}-r_{1} \approx \frac{10^{B}}{d}=\frac{b}{d}$ for some constand b.

$$
\stackrel{\Downarrow}{r_{2}-r_{1}} \propto \frac{1}{d}
$$

(b) Assume $d \gg h_{t}, h_{r}$

$$
\begin{aligned}
& r_{1}^{2}=\left(h_{t}-h_{r}\right)^{2}+d^{2} \\
& r_{1}=\sqrt{\left(h_{t}-h_{r}\right)^{2}+d^{2}}=d \sqrt{1+\underbrace{\text { small }}_{\frac{1}{\left(\frac{h_{t}-h_{r}}{d}\right)^{2}}}} \\
& \text { as hinted } \\
& \downarrow \\
& =d\left(1+\frac{1}{2}\left(\frac{h_{t}-h_{r}}{d}\right)^{2}\right) \quad \begin{array}{c}
\text { by the } \\
\text { assumption }
\end{array}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
r_{z}^{2} & =\left(h_{t}+h_{r}\right)^{2}+d^{2} \\
r_{2} & =\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}=d \\
& \approx d\left(1+\frac{1}{2}\left(\frac{h_{t}+h_{r}}{d}\right)^{2}\right)
\end{aligned}
$$

$$
r_{2}=\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}=d \sqrt{1+\left(\frac{h_{t}+h_{r}}{d}\right)^{2}}
$$

as hinted

$$
r_{0}-r_{1} \approx \frac{d}{(}\left(\left(h_{t}+h_{r}\right)^{2}-\left(h_{t}-h_{r}\right)^{2}\right)=\frac{d}{4 h_{t} h_{r}}=\underline{2 h_{t} h_{r}}=\frac{b}{1}
$$

as minted

$$
r_{2}-r_{1} \approx \frac{d}{2}\left(\left(\frac{h_{t}+h_{r}}{d}\right)^{2}-\left(\frac{h_{t}-h_{r}}{d}\right)^{2}\right)=\frac{d}{2} \frac{4 h_{t} h_{r}}{d^{2}}=\frac{2 h_{t} h_{r}}{d}=\frac{b}{d}
$$

where $\quad b=2 h_{t} h_{r}$.
proportionality constant
Remark: The approximation " $\sqrt{1+x} \approx 1+\frac{x}{2}$ when x is small" can be derived from the Taylor series expansion of $\sqrt{1+\infty}$ around 0 :

Let $g(a)=\sqrt{1+x}$. Then $g(a) \approx \underbrace{g(0)+g^{\prime}(0) x}_{\text {we use only }}+\frac{g^{\prime \prime}(0)}{2!} x^{2}+\cdots$ this part.

$$
g(0)=\sqrt{1+0}=1 . \quad g^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2} \Rightarrow g^{\prime}(0)=\frac{1}{2}
$$

(c) $(c . i)$

As hinted, we will first show that for $g(t)=a_{1} \cos \left(2 \pi f_{c} t+\phi_{1}\right)+a_{2} \cos \left(2 \pi f_{c} t+\phi_{2}\right)$,

$$
P_{g}=\frac{1}{2}\left|a_{1} e^{j \sigma_{1}}+a_{2} e^{j \phi_{2}}\right|^{2}
$$

First, we will try to combine the two terms in glt). To do this, we write

$$
\begin{aligned}
& g(t)=\operatorname{Re}\left\{a_{1} e^{j 2 \pi f_{c} t} e^{j \phi_{1}}+a_{2} e^{j 2 \pi f_{c} t} e^{j \phi_{2}}\right\} \\
&=\operatorname{Re}\{\underbrace{\left.\left(a_{1} e^{j \phi_{1}}+a_{2} e^{j \phi_{2}}\right) e^{j 2 \pi f_{c} t}\right\}}_{\text {This is simply }} \\
& \text { We complex number. } \\
&=\operatorname{Re}\left\{a e^{j 2 \pi f_{c} t} e^{j \phi}\right\}=a \cos \left(2 \pi f_{c} t+\phi\right) .
\end{aligned}
$$

In class, we know that signal of this T sinusoidal form has power $p_{g}=\frac{1}{2} a^{2}$. Observe that the number a is simply the magnitude of $a_{1} e^{j \phi_{1}}+a_{2} e^{j \phi_{2}}$.
Therefore, $\quad P_{g}=\frac{1}{2}\left|a_{1} e^{j \phi_{1}}+a_{2} e^{j \phi_{2}}\right|^{2}$
For $y(t)$, we have $a_{1}=\frac{a}{r_{1}} \sqrt{2 p_{t}}, a_{2}=-\frac{a}{r_{2}} \sqrt{2 p t}$,

$$
\phi_{1}=-2 \pi f_{c} \frac{r_{1}}{c}, \phi_{2}=-2 \pi f_{c} \frac{r_{2}}{c} .
$$

So, $\quad P_{y}=\frac{1}{2} \times 2 p_{t} \times\left|\frac{\alpha}{r_{1}} e^{-j 2 \pi f_{c} \frac{r_{1}}{c}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi t_{c} \frac{r_{2}}{c}}\right|^{2}$
From $x(t)=\sqrt{2 P_{t}} \cos \left(2 \pi f_{c} t\right)$, we have $P_{C}=P_{t}$.
Therefore, $\quad \frac{P_{y}}{P_{s}}=\left|\frac{\alpha}{r_{1}} e^{-j 2 \pi f_{c} \frac{r_{2}}{c}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} r_{2} / c}\right|^{2}$
(c .iii)
(1) We fetor nest $e^{-j 2 \pi f_{C} \frac{r_{1}}{c}}$
(chi)
(1) we factor out $e^{-j 2 \pi f_{c} \frac{r_{1}}{c}}$ to get

$$
\frac{P_{y}}{P_{c}}=\left|e^{-j 2 \pi f_{c} \frac{r_{1}}{c}}\left(\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}-r_{1}}{c}}\right)\right|^{2}
$$

Then use the fact that $\left|e^{j \alpha}\right|=1$ to get

$$
\frac{P_{y}}{P_{\alpha}}=\left|\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}-r_{1}}{c}}\right|^{2}
$$

(2) From part (b), we have $r_{2}-r_{1} \approx 2 \frac{h_{t} h_{r}}{d}$

Also, $c=f_{c} \lambda \Rightarrow \frac{f_{c}}{c}=\frac{1}{\lambda}$.
(3) From part (b), we have

$$
r_{1}-d \approx \frac{1}{2}\left(h_{t}-h_{r}\right)^{2} \text {, and } r_{2}-d \approx \frac{1}{2}\left(\frac{\left.h_{t}+h_{r}\right)^{2}}{d}\right. \text {. }
$$

Therefore, when d is large, $r_{1}, r_{2} \approx d$.
This allows factoring $\frac{\alpha}{d}$ out.
(4) When d is large, $4 \frac{\pi h_{t} h^{d}}{d}$ will be small.

For small z, we have $e^{z} \approx 1+z$.
(5) and $1-e^{2} \approx 1-(1+z) \approx-z$

